Maximizing the Usage of Value Vocabularies in the Linked Data Ecosystem:

Meaningful Concept Displays for KOS-based Searching and Browsing

Xia Lin
The College of Computing and Informatics
Drexel University
Philadelphia, Pennsylvania, USA

Use of KOS for Searching and Browsing

- Challenges in the Linked Data environment
 - More KOS vocabularies are available; but they are all in different formats through different APIs.
 - More resources/documents are searchable, but they are not indexed by the specified KOS.
 - There are few practical solutions to map concepts from one KOS to another or from KOS to natural languages.
 - Users demand easy-to-use interfaces and simple search logic.

Use of KOS for Searching and Browsing

- A Proposed solution MCD Appliance
 - Meaningful Concept Displays (MCD) that can be adapted to different KOS and different collections/ digital libraries
 - A unified vocabulary data structures for multiple KOS
 - KOS Web Services and APIs with concept mapping
 - KOS-based query expansion algorithms and interfaces
 - Visual and interactive concept displays

The Original Design

The Challenges

- Data structures: Converting KOS relational databases to unified data triples
- Concept mapping: Improving matching rates between two KOS terms.
- Displays: Applying visualization techniques for concept displays

Data Structures

- From relational databases to data triples
 - Three different versions of databases for Getty vocabularies were implemented and compared
 - A modified ISO 25964-1 database schema
 - Relatively "flat"; easy to query
 - A unified KOS (UMLS-style) database
 - Emphasize the difference of concepts, terms, and strings
 - A triple-based database
 - All the relationships are defined in a triple form
 - » Entity 1 has-relationship entity 2
 - Easy to convert to RDF

Data Structures

- Everything becomes either an entity or a relationship:
 - concept1 —>has-preferred-label term1
 - Concept1 —>has-parent concept 2
 - Concept1 –>has-concept-type term2
 - Concept1—>has-descriptive-note -- longString1
 - Concept1 —> is-derived-from term3
 - Concept1 —>is-in-facet term4
 - Concept₁ → is-a-component-of term5

Concept Mapping

- Goal: To map from one KOS to another KOS
 - Exact matches (based on string mapping after normalization) success only about 15%
 - Partial matches increase the matching rate to 60 to 80%, but false drop is increased significantly as well.
 - Additional information is needed to improve the matching rate
 - Semantic structures
 - Syntactic components

Concept Mapping

Experiment:

- to map Getty AAT terms in the Materials facet to (free text) indexing terms for "Materials" of an ARTStor images collection.
- Procedures
 - Normalize string for exact matches
 - Identify sub components if any
 - (i.e., "oil on canvas" → "oil AND canvas")
 - Identify Material sub-facets:
 - "color" (so they can be temporarily removed for the mapping purpose, i.e., "blue pastel on white canvas" ->"pastel on canvas")
 - "surface" (canvas, wood, glass, etc.)
 - "technique" (drawing, engraving, sketching, etc.)
 - "coating" (paint, ink, pencil, etc.)

Concept Mapping

Meaningful Concept Displays

- Meaningful concept displays (MCD)
 - Mapping and simplifying concept structures or relationships based on KOS and content collections.
 - Conveying the concept structures visually to help users understand and learn
 - Providing useful functions to help users complete their information tasks
 - Searching, browsing, exploring, tagging, and learning

MCD and Visualization

Meaningful

 The picture conveys semantic structures or relationships that the viewer can understand

Trustful

 The structures and relationships on the picture match the semantic structures of the underlying data.

Useful

 What users get from the picture will help them do something useful.

MCD and Visualization

Three approaches:

- Visualizing existing structures or relationships
 - in KOS or link structures
- Visualizing learned structures or relationships
 - through machine learning
 - through linked data
- Visualizing structures through visual metaphors
 - to serve a purpose better
 - to make it easy to understand

MCD for Visualizing Existing Structures

MCD for Visualizing Learned Structures

--Interactive Concept Map of "aging"

MCD by Metaphors

-- A ripple style query expansion

MCD by metaphors

Summary

- To creative effective and useful MCD, we have made progress on three major areas:
 - Developing a triple-based database structure for integrating multiple KOS.
 - Developing new procedures and algorithms for concept mapping.
 - Designing and implementing effective styles of displays and interaction for concept-based searching, browsing, and learning.

Acknowledgments

- Thanks to IMLS for funding this project.
- The work presented here is done by the whole project team:
 - Dagobert Soergel, Univ. of Buffalo
 - William Ying, ARTstor
 - Murtha Baca, Getty Research
 - Jae-wook Ahn, Data Scientist, Drexel
 - Mi Zhang, Mike Zarro, Haozhen Zhao, Drexel
 Ph.D. students

DDC Visualization

-- Visualizing DDC classes based on document relationships

Dewey Digital Universe

