

Geospatial Relationships in Organization of Knowledge

Olha Buchel New England Complex Systems Institute

NEW ENGLAND COMPLEX SYSTEMS INSTITUTE solving problems of science and society

Geospatial Relationships in Gazetteers

Buchel, O., & Hill, L. L. (2010). Treatment of Georeferencing in knowledge organization systems: North American contributions to integrated Georeferencing. *KO KNOWLEDGE ORGANIZATION*, *37*(1), 72-78.

Geospatial Relationships as First-Class Objects

Janée, G. 2002. The ADL Gazetteer & Thesaurus Service Protocols. Alexandria Digital Library Project.

Geospatial Relationships in Geographic Information Retrieval

Within(a,b)

Hill, L. L. (2009). Georeferencing: The geographic associations of information. Mit Press.

Geospatial Relationships in Ontologies

Ontologies

Baclawski, K., Bennett, M., Berg-Cross, G., Schneider, T., Sharma, R., Singer, J., & Sriram, R. D. (2021). Ontology summit 2020 communiqué: Knowledge graphs. Applied Ontology, (Preprint), 1-19.

Digital Twins

West, M. (2020) The Digital Twin Project in the UK. https://go.aws/2HdGBYr.

KnowWhereGraph

Janowicz, K. (2020) KnowWhereGraph: Enriching and Linking Cross-Domain Knowledge Graphs using Spatially-Explicit AI Technologies to Address Pressing Challenges at the Human-Environment Nexus. https://go.aws/2xmMSQd.

Mobility Data (Secondary Data)

 JAN 13
 FEB
 MAR
 APR
 APR 12

Ap

https://www.safegraph.com

Mobility Datasets

Column Name	Description	Туре	Example
origin_census_block_group	The unique 12-digit FIPS code for the Census Block Group. Please note that some CBGs have	String	
date range start	Start time for measurement period in ISO 8601	String	2020-03-01
-	format of YYYY-MM-DDTHH:mm:SS±hh:mm	_	
date_range_end	End time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm	String	2020-03-02
device_count	Number of devices seen in our panel during the date range whose home is in this	Integer	
distance_traveled_from_home	Median distance (in meters) traveled from the geohash-7 of the home by the devices included	Integer	
bucketed_distance_traveled	Key is range of meters (from geohash-7 of home) and value is device count. If a device	JSON {String:	{"0": 100, "1 "8001-16000
<pre>median_dwell_at_bucketed_ distance_traveled</pre>	Key is range of meters and value is the median dwell time in minutes of the devices that traveled	JSON {String:	{"<1000": 30 5, "16001-50
completely_home_device_count	Out of the device_count, the number of devices which did not leave the geohash-7 in which their	Integer	
median_home_dwell_time	Median dwell time at home geohash-7 ("home") in minutes for all devices in the device_count	Integer	
bucketed_home_dwell_time	Key is range of minutes and value is device count of devices that dwelled at geohash-7 of	JSON {String:	{ "< 60": 0, "6
at_home_by_each_hour	A mapping of hour of day to the number of devices at geohash-7 home in each hour over	JSON [Integer]	[90, 90, 90,
part_time_work_behavior_devices	Out of the device_count, the number of devices that spent one period of between 3 and 6 hours	Integer	
full_time_work_behavior_devices	Out of the device_count, the number of devices that spent greater than 8 hours at a location	Integer	
* destination_cbgs	Key is a destination census block group and value is the number of devices with a home in	JSON {String:	{"130890212
delivery_benavior_devices	Out of the device_count, the number of devices that stopped for < 20 minutes at > 3 locations	Integer	
* median_non_home_dwell_time	Median dwell time at places outside of geohash-7 home in minutes for all devices in the	Integer	
* candidate_device_count	Number of devices in our panel whose home is in this census_block_group regardless of	Integer	
* bucketed_away_from_home_time	Key is range of minutes and value is device count of devices that dwelled anywhere outside	JSON {String:	{"0- 20": 5, " "181-240": 1
* median_percentage_time_home	Median percentage of time we observed devices home versus observed at all during the time	Integer	
* bucketed_percentage_time_home	Key is a range of percentage of time a device was observed at home (numerator) out of total	JSON {String:	{"0-25": 6, "2
** mean_home_dwell_time	Mean dwell time at home geohash-7 ("home") in minutes for all devices in the device_count	Integer	
** mean_non_home_dwell_time	Mean dwell time at places outside of geohash-7 home in minutes for all devices in the	Integer	
** mean_distance_traveled_from_home	Mean distance (in meters) traveled from the	Integer	

SafeGraph's Social Distancing Metrics

https://docs.safegraph.com/docs/social-distancing-metrics

Sources of Primary Data

• Twitter data

Abbey Crain 🕗 @AbbeyCrain

Today I worked from the <a>obpl diving into Alabama's abortion coverage post Roe and let me tell you. Time is a flat circle.

- Facebook data
- Mobile phone data
- LinkedIn data
- Transportation data

...

	New York City, NY	Boston, MA	Cambridge, MA	Chelsea, MA	Buffalo, NY	Detro
Α	X		X			
В		X	X	X		
C					X	X
D	X					X
E		X	X			

Types of Aggregation

	New York City, NY	Boston, MA	Cambridge , MA	Chelsea, MA	Buffalo, NY	D
Α	X		X			
В		x	x	x		
С					x	X
D	x					X
Ε		X	X			

Level 1

Level 2

Level 3

0 1	00	01	= 10	11	000	001	010	011	100	101	110	111
2 3	02	03	12	13	002	003	012	013	102	103	112	113
	20	21	30	31	020	021	030	031	120	121	130	131
	22	23	32	33	022	023	032	033	122	123	132	133
					200	201	210	211	300	301	310	311
					202	203	212	213	302	303	312	313
					220	221	230	231	320	321	330	331
					222	223	232	233	322	323	332	333

Biases in Geospatial Relationships

Buchel, O., Pennington, D. (Forthcoming). Geospatial analysis. In Luke Sloan & Anabel Quan-Haase, The Sage handbook of social media research methods. SAGE Publications Ltd. 2nd ed.

Buchel, O., Hedayatifar, L. (Forthcoming). Multiscale functional communities. In Luke Sloan & Anabel Quan-Haase, The Sage handbook of social media research methods. SAGE Publications Ltd. 2nd ed.

Thanks!

NEW ENGLAND COMPLEX SYSTEMS INSTITUTE solving problems of science and society

Olha Buchel

olha@necsi.edu

www.necsi.edu www.endcoronavirus.org