Evaluating utility of subject headings in a data repository: A preliminary finding from a data search log and record classification

Presented by:

Mingfang Wu, Australian Research Data Commons mingfang.wu@ardc.edu.au

Contributors:

Rowan Brownlee, Australian Research Data Commons Ying-Hsang Liu, University of Southern Denmark Jenny Xiuzhen Zhang, RMIT University, Australia

NKOS, 10 Sept. 2020

Outlines

- A background about the studied data catalogue:
 Research Data Australia
- Log analysis: the usage of subject headings
- Experiments on data record classification
- Future work

Research Data Australia - A National Data Catalogue

Schema: The Registry Interchange Format - Collections and Services (RIF-CS, ISO 2146:2010)

Types of subject vocabularies

Anzsrc-for: The Australian and

New Zealand Standard Research Classification (ANZSRC, fields of research)

Global change master directory (GCMD) keywords

Australian Pictorial Thesaurus (apt)

Thesaurus of Psychological Index Terms (psychit)

Library of Congress Subject Headings (lcsh)

Type of subject vocabularies

Anzsrc-for: The Australian and New Zealand Standard Research Classification - Fields of Research

- ANZSRC ensures that R&D statistics collected are useful to governments, educational institutions, international organisations, scientific, professional or business organisations, business enterprises, community groups and private individuals in Australia and New Zealand.
- ANZSRC-FoR include major fields and related sub-fields of research and emerging areas of study investigated by businesses, universities, tertiary institutions, national research institutions and other organisations.

Anzsrc-for: The Australian and New Zealand Standard Research Classification - Fields of Research)

Number of records per anzsrc-for two digits

04: Earth Sciences

06: Biological Sciences

21: History and Archaeology

Search interface

All text strings (including subject headings) are indexed.

All Fields + gene

x Q Search

Subject headings

Dataset

Disease gene prediction database

Deakin University

Dr Merridee Wouters (Aggregated by) Mr Martin Oti (Aggregated by)

Viewed: 946 Accessed: 15

Record view

☑ Access the data

Cite

☐ Save to MyRDA

Licence & Rights:

Other view details

Access:

Other view details

Contact Information

Postal Address:

School of Life and Environmental Sciences. Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216 Australia

Full description

This database includes gene predictions for disease phenotypes based on published Genome-Wide Association Data. May be used to choose primers for phenotype-specific resquencing of patient DNA.

For each prediction for following data is listed: phenotype, predicted gene, significant SNP, datasource, datasource reference.

Notes

The data was generated by a computer from clinical data, and some data from HuGE (http://hugenavigator.net/HuGENavigator /home.do) was used. The data is organised within a searchable

Subjects

3. Facet search

(vocabulary + keyword)
Biological Sciences | Clinical Health (Organs, Diseases and Abnormal Conditions) | Genetics | Genetics Not Elsewhere Classified | Health | Inherited Diseases (Incl. Gene Therapy) | database | genetic databases | genome-wide association study | humans | polymorphism | protein disease/genetics | single nucleotide | software |

Log analysis: the usage of subject headings

- Transaction log: one year (2019) of activities recorded from the RDA catalogue
- About 2 million entries/activities, 63% from Australia
- About 496,739 sessions (with 30 minutes duration from the same IP address)
- 37,056 sessions have at least a search event (keyword search, advanced search, subject (factet) filter, subject search
- 4668 (12.6%) of search sessions involved filters/search with the anzsrc-for subjects, only 45 (0.1%) with gcmd subject

Subject usages per anzsrc-for two digits code

Subject distribution among clicks and the collection

Log analysis: the usage of subject headings

- There is less bias in user's behaviour of applying subject headings, compared to the content bias toward a few subject headings.
- However, this log shows low usage of subject headings
- Exploring causes
 - Further log analysis, e.g. correlation between subject usage and
 - query types
 - domain knowledge
 - search quality
 - Interface design
 - At the record level: only half of the indexed records have anzsrc-for codes

Machine learning for record classification

- Assign anzsrc-for code to unlabelled records automatically
 - Aim to improve search experience for both human and machine
 - Understand domain coverage of the collection
- Train models, three components are essential for the training:
 - Labels anzsrc-for code
 - Classifier four supervised machine learning methods:
 - multinomial logistic regression (MLR), multinomial naive bayes (MNB),
 K Nearest Neighbors (KNN), Support Vector Machine (SVM)
 - Data (~78k) records with anzsrc-for code
 - Split into two sets: training set, test set
- Apply model(s)/best prediction to unlabelled records

Record classification with anzsrc-for code

- Use 77918 records that have an anzsrc-for code for training models
- Step by step: first the top two digits, then move down to four, six digits
- Four models: multinomial logistic regression (MLR), multinomial naive bayes (MNB), K Nearest Neighbors (KNN), Support Vector Machine (SVM)

Model	Training Set Accuracy	Test Set Accuracy		
Logistic Regression	0.769149	0.701299		
SVM	0.696435	0.676324		
Multinomial Naïve Bayes	0.702965	0.659341		
KNN	0.906460	0.642358		

Performance per category

Most correlated unigrams:

Code	Top 5	Bottom 5
04	earth	al
	airborne	unit
	geophysical	two
	mount	australia
	igsn	region
15	study	given
	financial	number
	survey	received
	university	document
	dataset	expert

04: Earth Science

15: Commerce, Management, Tourism and Services

2 digtis					No. of
Code	MLR	SVM	MNB	KNN	records
01	0.29	0.00	0.43	0.33	111
02	0.97	1.00	0.95	1.00	*300
03	0.67	0.56	0.55	0.58	499
04	0.98	0.96	0.94	0.96	*600
05	0.68	0.71	0.53	0.54	*400
06	0.98	1.00	0.89	0.78	*600
07	0.63	0.55	0.52	0.79	*200
08	0.42	0.22	0.23	0.41	386
09	0.95	1.00	1.00	0.84	*200
10	0.33	0.00	0.00	0.19	128
11	0.82	0.81	0.83	0.66	*400
12	0.71	1.00	0.77	0.81	174
13	0.58	0.82	0.54	0.56	148
14	0.35	0.00	0.83	0.57	122
15	0.23	0.00	0.00	0.25	76
16	16 0.49	0.47	0.44	0.50	*300
17	17 0.47		0.57	0.50	112
18	1.00	1.00	1.00	1.00	*400
19	0.77	0.62	0.48	0.58	343
20	0.64	0.72	0.48	0.20	*300
21	0.96	0.94	0.88	0.98	*600
22	0.22	0.00	0.33	0.20	79
micro ave	0.70	0.68	0.66	0.64	
macro ave	0.65	0.56	0.60	0.61	

Examples of classification within two-digits code

Method: MLR

06: Biological Sciences (41505 records)02: Physical Sciences (3533 records)

06: 17268 records (out of 41505) have both 0601 and 0604 labels

	precision	test data		precision	test data	
0601	0.58	2859	0201	1.00	752	
0602	0.99	652	0202	0.00	1	
0603	0.15	22	0203	0.04	2	
0604	0.49	2560	0204	0.32	13	
0605	0.01	11	0205	0.00	0	
0606	1	3	0206	0.00	0	
0607	0.1	48	0299	1.00	116	
0608	0.52	51				
0699		20				
micro avg	0.5	6226		0.58	884	
macro ave	0.43			0.34		
weighted ave	0.58			0.99		

	_	Confusion matrix - MLR (06 - Biological Sciences)								
Bi	ochemistry and Cell Biology (601) -	560	0	6	2248	0	1	0	44	0
Predicted	Ecology (602) -	4	325	21	0	0	57	0	230	15
	Evolutionary Biology (603) -	2	0	6	0	0	3	0	11	0
	Genetics (604) -	397	1	1	2130	0	15	0	16	0
	Microbiology (605) -	1	1	2	0	0	4	0	3	0
	Physiology (606) -	0	0	0	0	0	1	0	2	0
	Plant Biology (607) -	3	0	2	0	0	15	10	18	0
	Zoology (608) -	2	1	3	0	0	7	0	38	0
	Other Biological Sciences (699) -	1	0	0	0	0	1	0	2	16
		601	602	603	604	605 Actual	606	607	608	699

Discussion and future work

- User behaviour:
 - Evidence that subject headings are used
 - Why and why not
 - Low usage of subject headings from this log collection
 - Is this unique to this data catalogue and interface?

Log analysis + survey and interview

- Collection characteristics:
 - Large proportion of records from the catalogue without a "standard" vocabulary for the subject headings a known issue
 - Those with subject headings are biased toward a few categories
 - Encourage underrepresented subject areas to publish and share data
 - Record classification works for some categories
 - Explore correlation, improvement

Thanks!